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DETECTION PERFORMANCE OF OR-ING DEVICE WITH PRE— AND

POST-AVERAGING: PART III — DETERMINISTIC SIGNAL
INTRODUCTION
BACKGROUND

The need to process and condense large amounts of data is
encountered frequently in modern Navy systems that employ
multiple beams, frequency bins, range cells, et cetera. One way
of accomplishing this goal is by or-ing a number of inputs into a
single output - that is, ailowing only the largest of a set of
quantities to pass on for further processing and completely
rejecting the remainder. However, since this or-ing operation is
highly nonlinear, destroys information, and tends to cause small-
signal suppression, some pre—-averaging of the inputs to the
or-ing device is often employed in an effort to build up the
signal-to-noise ratio (SNR) prior to the maximum comparison.
Furthermore, at the or-ing output, some additional post-averaging
is frequently used, this time in an effort to build up the SNR
before a threshold comparison is made for the purpose of
declaring a signal present or absent (hypothesis H, or HO'
respectively). The pertinent block diagram is displayed in

figure 1.

There are N channels of real input data available for

processing, namely, {xn(t)} for n=1:N, where time t has been
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Figure 1. Or-ing with Pre- and Post-Averaging

normalized so that time-sampling instant t is an integer. Under
hypothesis HO’ there is only Gaussian noise in all the inputs,
whereas under hypothesis Hi, @ signal is.also present in one
(unknown) channel. The goal of the processor in fiqure 1 is to
determine signal presence with a high detection probability Pgr
while realizing a specified acceptable low false alarm

probability Pe.

Each pre—a?erager accumulates K statistically independent
consecutive time samples of its corresponding input xn(t),
yielding output yn(t), which is then subjected to or-ing amongst

N competitors. The or-ing output at time t is
vit) = max{yl(t),v--,yN(t)} . (1)

Finally, the post-averager accumulates M samples of its input

v(t) and compares its output w(t) with a fixed threshold. It is



presumed that the post-averager waits for all the K input data
samples to be summed and or-ed before an input is received; then,
another block of K input samples is summed and or-ed, leading to
the next input to the post-averager. That is, block processing

is presumed.

SCOPE

This technical report constitutes part III of a series of
three investigations of or-ing with pre- and post-averaging. In
particular, three different input signal models in additive

Gaussian noise are of interest:

(I) Random (Gaussian) signal,
(II) Phase-incoherent signal, and

(III) Coherent (deterministic) signal.

Results for part I, the Gaussian signal, have been documented in
reference 1. Specifically, the details on block and overlap
processing, as well as a scaling property and the étandard of
comparison for the or-ing system in figure 1, are presented here,
along with references to related past résults. Part II, the
phase-incoherent signal, was documented in reference 2. The
reader should be familiar with the contents of both of these

earlier documents.



The current report addresses part III, the deterministic
signal in noise, and presents numerous receiver operating
characteristics (ROCs) that completely quantify the performance
of the or-ing system in figure 1. For all three signal models
above, the optimum processors have been determined, as shown in
appendix A of reference 1. Thus, the exact losses that the

or-ing procedure causes can be accurately quantified.

For the block processing in figure 1, expressions are derived
that allow for accurate evaluation of the false alarm probability
Pe and the detection probability Py for the decision variable
w(t). Furthermore, these evaluations are accomplished for
arbitrary amounts of pre-averaging K, arbitrary amounts of or-ing
N, arbitrary amounts of post-averaging M, and arbitrary input
SNRs. No approximations are involved, the analysis is not
limited to mean and variance calculations, and no appeal is made
to the central limit theorem. Rather, the approach employs a
judicious combination of analysis and computer-aided numerical
calculations. The accuracy of the end result is limited only by
the accuracy of the computer. An entire ROC can be generated in

minutes.



INPUT DATA MODELS

In this section, 9, is a zero-mean, unit-variance Gaussian

random variable (RV).

DETERMINISTIC SIGNAL IN GAUSSIAN NOISE

Here, in part III, the signal channel input at time k under

- Hy is amplitude variate
X, =g + dk ' (2)

where dk is nonrandom. The input mean is EE = dk' while the
input variance is var(x,) = 1. Thus, dy is an input amplitude
SNR measure, while di (or di/Z) is an input power SNR measure.
For the noise channels, Xp = Gy with zero mean and unit
variance. Thus, dk can be interpreted as a per-sample difference

in mean inputs that is divided by the common input standard devi-

ationi. This quantity, dk' will be éalled the input deflection.

When dk = d for all k (that is, a common input deflection d
over time, or a constant signal amplitude with time), the pre-

averager output under Hy for the signal channel is
K K o
y=:xk=ng+Kd=y + K d , (3)

where y° is the corresponding noise-only pre-averager output.

The ROCs can be parameterized by input deflection d or input

2

.power SNR measure d° (or dz/Z). More generally, the single



parameter value dT = I dk characterizes the performance of the
processor when the individual input deflections {dk} are unequal
and arbitrary. However, this observation is of limited utility
unless all of the M sums of {dk}, one for each post-averaging

interval, are identical.

OPTIMUM PROCESSING OF AVAILABLE DATA

The optimum processor for signal model (2) has been derived
in appendix A of reference 1 for the case where channel occupancy
identification is required, as well as for the alternative case
where channel identification is irrelevant. For all situations,
the optimum processor is essentially given by the threshold

comparison

T
) e
see equations (A-13), (A-19), and (A-26) of reference 1. This
operation is equivalent to performing all pre-averaging and no
post-averaging in figure 1, that is, taking K = T, the total
time-bandwidth product available, and M = 1. Doing so defers the
nonlinearity (or-ing) until after all pbssible linear combining
(pre-averaging) has been accomplished. This case will be
thoroughly evaluated numerically and will serve as the basis of
comparison for the various coﬁbinations of pre-averaging and

post-averaging, that is, K < T or M > 1.



PERFORMANCE ANALYSIS FOR BLOCK PROCESSING

Due to the pre-averaging, each RV yn(t) in figure 1 is a sum
of K independent RVs with identical statistics. Also, all N
channel inputs are statistically independent of each other.
For or-ing to be present, N > 2 is required for the following

calculations and considerations.

For a noise-only channel, let Py be the probability density
function (PDF) of pre-averager output yn(t), and let 5 be the
corresponding cumulative distribution function (CDF), namely,
co(u) = Prob{yn(t) < ulHo}. For a signal present in channel 1,

say, let P4 and cq be the corresponding PDF and CDF of yl(t).

The or-ing output v(t) in figurell is
vit) = max{yl(ﬁ),...,yN(t)} . (5)
Its CDF for signal present, that is, hypothesis Hl, is
N-1 '
c,1(u) = ¢ (u) fcy(u)l ' : (6)

which leads to the corresponding PDF of v(t) under H1 as

P,y (w) = cr (u) = py(w) [eg IV + ¢ (u) (8-1) [eg(w) V2 py(w)

N-2

[eg(w 1% [pg(u) cylu) + (N-1) polu) ¢;(u)] . (7)

The signal-absent PDF of v(t) under Hy follows immediately as

Pyo(w) = N po(u) [egfuw) Nt . (8)



The corresponding exceedance distribution functions (EDFS)
(namely, ev(u) =1 - cv(u) for or-ing output v(t)) can be
expressed in terms of the following series expansions, which are

useful for very small EDF values:

N-1

epr(¥) = ep(w) - cp(w) 3 ("21) r-eptwi™ (9)
n=
N N n
e o) = =3 i (n] [-eg(u)1™ . (10)
n=

The characteristic function (CF) of or-ing output v(t) is

given by the Fourier transform

fV(E) = exp(idv(t)) = j du exp(i&u) pv(u) ' (11)

where either relevant form, Py ©OF Pyg above, is to be used.
Finally, for the block processing in figure 1, there is no
overlap of the data used in the post-averager, meaning that the

processor output w(t) is the sum of M independent identically

distributed RVs. Therefore, the CF of the decision variable w(it)

in the figure is simply

. |
£,(8) = [£ (e . (12)

One final Fourier transform is required to manipulate CF
fw(E) into the desired EDF ew(u) of processor output w(t); see
references 3 and 4. This EDF will be the false alarm probability
P or the detection probability Py of the or-ing processor,

depending on whether PDF P,o ©OF Pyy is used, respectively.



The fundamental Fourier transform in equation fll) will
generally have to be accomplished numerically by means of a fast
Fourier traﬁsform (FFT). 1If pre-averager output statistics Po
and cd can be found in closed form or a readily computed form, a
cascaded FFT approach will lead to exact false alarm probability
results for the or-ing processor in figure 1. 1If pre-averager
output probability functions Py and c; can also be readily
evaluated, accurate detection probability results can be
similarly calculated as well. Some important numerical
considerations for this cascaded FFT approach‘are presented in

appendix B of reference 1.

For the special case of M = 1 (no post-averaging), processor
output RV w(t) = v(t) in figure 1, and the corresponding EDFs

follow, for any K and N, as

e (W =1 - c(u) legwiNt, (13)
e (u) =1 - [c(u)IN . (14)
w0 0 °

Now, return to arbitrary values of K, N, and M, and

specialize the general results above to the deterministic signal

model of interest here, namely, equations (2) and (3).



DETERMINISTIC SIGNAL

Define d = VK d and auxiliary Gaussian functions

X
6(x) = (2n) 7% exp(-x2/2) , #(x) = [ au squ) . (15)

-_

Then, for constant signal amplitudes, the requisite probability

functions for pre-averager outputs {yn(t)} for any K and u are

2

2
Py (u) = (—Zui—)g exp (- S5Rt) - 7k ek - S] ' (17)
cow) = 8(78) . cj(u) = ¢(72 - q) . (18)

Using equations (8) and (7), the PDFs for or-ing output

v(t) for any K and N, under Hy and H,, are, respectively,

P = 74 o) [ - @) o)+ vy o) (i - 9)]
(20)
£ o(E) = N j dx exp(ifK®x) ¢(x) #(x)V1 , (21)

2

£,008) = [ax exp(iEK%x) #(x)V"2 [o(x-d) #(x) + (N-1) $(x) #(x-d)].

(22)

10



Equation (12) can now be utilized to obtain the CFs of output
decision variable w(t) in figure 1 under both hypotheses,H0 and
Hl.

A SHORTCUT IN TABULATED RESULTS

For a specified Pe and Pyr let d(K,N,M) be the input
deflection required to achieve that operating point. 1In

particular, let
dl(N,M) = d(1,N,M) (23)

be the input deflection required for K = 1. Also, observe from
the forms of equations (16) through (18) that the effect of
adding K independent Gaussian RVs is simply to scale the input
deflection measure by vK, which means that the required input
deflection satisfies the relation

d. (N,M)
d(K,N,M) = d(lkﬁ'm) = 1/K ) (24)

Therefore, it is only necessary to evaluate ROCs and tabulate
numerical results for the case of K = 1; N and M can be general
integers. This observation significantly reduces the amount of
computations and graphs that need to be investigated and
catalogued. 1In the following, the ROCs will be computed solely
for K = 1 and labeled with the corresponding values of input
deflection dl(N,M). However, these labels could be replaced by
VK d(K,N,M) for any K, and the same ROCS would still apply for

any selected value of integer K.

11




SPECIAL CASES

When M = 1 (no post-averaging), the EDFs in equations (13)
and (14) can be combined with the results in equation (18) to
immediately yield closed-form expressions for Pe and Py for any

K, N, and input deflection 4, namely,

1 - teuve) 1N, py= 1 - s(uik- d) [e(uvK) IV L (25)

o
Il

Here, d = d VK. Furthermore, these equations can be solved
explicitly for the required threshold u and the required input
deflection d to realize a specified Pe and Pyt

$(a) - 8(ap)  91(N,1)
VK - VK ’

VK 3(a) , d(K,N,1) = (26)

c
]

where & is the inverse ¢ function, and the auxiliary parameters
oo and B are defined as

1 -P

T-73, (27)

R
]

alN) = (1 - p )N, g

For N = 1, no or-ing, and arbitrary K and M, under Hl' the

results above simplify to system output PDF

: 2
1 (u - Td)
p..4(u) = exp|- —s7———| , T =K M, (28)
wl (2nT)% [ 2T ]
and output EDF
Py(v) = j du p_,(u) = Q(qd - %) , g =7T% = (kM)% . (29)
v

12



Obviously, for N = 1, only the product KM matters, at least for

unity weights in both the pre- and post-averagers.

For the special case of N = 2, the integrals in equations
(21) and (22) can be evaluated in terms of the error function of

complex argument w( ); see reference 5, chapter 7. The CFs

follow as
£ (E) = exp(—v2) wiv) (30)
v0
and
1 2 2. . . .
fvl(i) =3 exp(—v“=v+i2yv) [w(y+iv) + w(y-iv)] , (31)

where y = K%E/Z and v = K%d/z. The amount of pre-averaging K is
arbitrary. The CFs of decision variable w(t) are given by the
M-th powers of the above two results under Hy and Hy,

respectively, when N = 2,

NUMERICAL APPROACH

When the CF fv(E) of or-ing output v(t) can be derived in
closed form, such as in the special cases (30) and (31), fv(i)
can be used directly in equation (12) to find the closed-form CF
of decision variable w(t). This route is preferred because CF
fv(E) can decay rather slowly with & for some values of K and N,

making the use of equation (11) difficult.

13




Therefore, closed-form results for CF fV(E), when available,
can be very useful in terms of avoiding some numerical problems
in the discrete Fourier transform of pv(u) according to equation
(11). WwWhen this is not possible, the closed-form results for the
or-ing output PDFs given in equations (19) and (20) are used,
instead, in the cascaded FFT procedure outlined in equations (11)

and (12).

14



QUANTITATIVE PERFORMANCE RESULTS

REQUIRED INPUT DEFLECTIONS

This section gives specific quantitative detectability
results with various amounts of or-ing N and post-averaging M,
while the amount of pre-averaging is kept at K =1. 1In

particular, 54 ROCs are presented in appendix A for the cases of

N=1, 2, 4, 8, 16, 32,
M=1,2, 4, 8, 16, 32, 64, 128, 256.

A standard operating point (SOP) is defined here as
Pe = 1E-3 and Pd = 0.5, while a high-quality operating point
(HOP) is defined as Pe = 1E-6 and Py = 0.9. The required input
‘deflection values dl(N,M) for the SOP and HOP have been extracted
from the ROCs in appendix A and are presenfed in tables 1 and 2,
respectively. These results for K = 1 can be used to find the

required input deflection for general integer K according to

dl(N,M)
d(K,N,M) = 5 - ' . (32)

In conjunction with equation (32), the input deflections in
tables 1 and 2 form the basis for the plots in figures 2 through
9 for both the SOP and HOP cases of KM = 4, 16, 64, and 256.
Figures 10 and 11 are identical to figures 8 and 9, except that

the ordinates are now in decibels according to

15



‘Table 1. Required Input Deflection dl(N,H) for

Pf = 1E-3, Pd = 0.5, K = 1, Deterministic Signal

N 1 2 4 8 16 32
M .

1 3.09 3.29 3.48 3.66 3.83 4.00

2 2.19 2.44 2.67 2.90 3.10 3.30

4 1.55 1.82 2.08 2.33 2.56 . 2.77

8 1.09 1.37 1.63 1.89 2.13 2.35
16 0.773 1.02 1.28 1.53 1.78 2.01
32 0.546 0.756 0.994 1.24 1.49 1.72
64 0.386 0.557 0.766 0.998 1.24 1.47
128 0.273 0.407 0.584 0.794 1.02 1.25
256 0.193 0.296 0.440 0.623 0.833 1.05

Table 2. Required Input Deflection dl(N,n) for
Pf = 1E-6, Pd = 0.9, K = 1, Deterministic Signal
N 1 2 4 8 16 32
M

1 6.03 6.17 6.31 6.44 6.57 6.69

2 4.27 4.46 4.64 4.82 4.98 5.15

4 3.02 3.27 3.50 3.71 3.91 4.11

8 2.13 2.42 2.68 2.93 3.15 3.37
16 1.51 1.80 2.08 2.34 2.58 2.81
32 1.07 1.35 1.62 1.89 2.14 2.37
64 0.754 1.00 1.26 1.53 1.78 2,02
128 0.533 0.742 0.980 1.23 1.48 1.72
256 0.377 0.546 0.753 0.986 1.23 1.46

dB = 20 log(d), since d is an amplitude SNR measure. Additional
figures could also be plotted for the intermediate cases of

KM = 2, 8, 32, and 128, if desired, by use of tables 1 and 2.
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The accurate deflection values in tables 1 and 2 were
interpolated from the ROCs in appendix A while the false alarm'
and detection probability numbers, Pe and Py, were still resident
in the computer; eyeball interpolation from the plotted ROCs

cannot be accomplished this accurately.

It can be seen from figures 2 through 9, as expected, that
the required input deflection d increases monotonically with the
number (N) of channels or-ed if K and M are held fixed. Also,
the required input deflection increases monotonically with the
amount (M) of post-averaging employed if N and product KM are
held fixed; alternatively, the required input deflection
decreases with the amount (K) of pre-averaging employed if N and
product KM are held fixed. The exact rates can be determined

from figures 2 through 9 and the ROCs in appendix A.

TRADEOFF BETWEEN PRE- AND POST-AVERAGING

Fof a fixed amount of total time-bandwidth prodﬁct, that is,
T = KM = constant, it is possible to shift some of the pre-
averaging to post-averaging, or vice vérsa. For example, if
KM = 16, this shift could be accomplished by taking K = 16 and
M = 1, which corresponds to no post-averaging, and then switching
to K =1 and M = 16, which corresponds to no pre-averaging.
Alternatively, intermediate values such as K = 4 and M = 4 could

be used, still keeping KM = 16.
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In all cases, increasing M at the sake of K requires larger
input deflections to maintain the same operating point; see
figures 2 through 9. This is because the optimum processor
conducts all pre-averaging before any nonlinear operations; see
appendix A of reference 1. For example, to maintain the SOP when
KM = 16, table 1 and equation (32) indicate that the input
deflection must be scaled by factors of 1.24, 1.47, 1.67, 1.86,
and 2.01 for N = 2, 4, 8, 16, and 32, respeétively, if the switch
is made from all pre-averaging to all post-averaging.
Alternatively, to maintain the HOP, the corresponding scaling
ratios from table 2 and equation (32) are smaller (1.17, 1.32,
1.45, 1.57, and 1.68 for N = 2, 4, 8, 16,band 32, respectively).

For a HOP such as Pe = 1E-6 and Py = 0.9, larger input
deflections are naturally required to achieve the higher level of
performance. At these larger input deflections, the or-ing
process is more frequently dominated by the signal-bearing
channel. Therefore, as the number (N) of channels or-ed
increases, the required increases in input deflection are less
severe than for a lower quality operating point, such as SOP
Pf = 1E-3 and Pd = 0.5. For example, for K = 16 and M = 1,
increasing N from 2 to 32 requires a gain factor of 1.22 in the
deflection to maintain the SOP, whereas only a gain factor of

1.08 is needed at the HOP.
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A related observation is that, for a given configuration
(fixed K and M), the relative increase in input deflection
required to maintain the SOP is more severe for the larger M
values as the amount of or-ing increases. Thus, for KM = 16, as
N increases from 2 to 32, a deflection factor increase of 1.22
suffices to maintain the SOP for M = 1, whereas a factor of 1.97
is required for M = 16. The corresponding relative increases at
the HOP are 1.08 for M = 1 versus 1.56 for M = 16, as N increases
from 2 to 32. The behaviors are similar for the other values of
KM, although the required input deflection values are smailer as
KM increases because of the additional observation times

allowed.

Inspection of figures 10 and 11 reveals that the decibel
or-ing losses in the input deflection (20 log(d)) are much larger
than for the random signal treated in part I (reference 1) and
the phase-incoherent signal in part II (reference 2). The reason
is that if KM is held fixed and M increases, then K is
decreasing. But, since the pre-averager is now (part 1III)

performing coherent (amplitude) addition rather than incoherent

addition (that is, sums of envelopes squared in parts I and I1),
any decrease in K is felt more strongly. So, the tradeoff from
pre-averaging (larger K) to post-averaging (larger M, smaller K)
is more detrimental to performance for a deterministic signal

than for a random signal or a phase-incoherent signal.
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SUMMARY

For a deterministic signal in Gaussian noise, closed-form
expressions have been derived for the PDFs at the output of a
pre-averager followed by an or-ing operation. These forms have
been numerically subjected to a cascaded pair of Fourier
transforms to yield accurate results for the EDFs at the output
of a post-averager, under both hypotheses Hy and Hy, for numerous
values of the parameters of the complete processor (figqure 1).
Such results enable investigation of the or-ing processor for
false alarm probabilities Pf in the range of 1E-6 and smaller;

there is no need to resort to lengthy simulations.

Numerous ROCs have been generated that enable users or system
designers to quickly assess the losses to be expected from
employing or-ing in their processors. Also, quantitative
evaluation of the tradeoffs between pre-averaging and post-
averaging has been conducted. Finally, because the enclosed
tabulations will undoubtedly not cover all cases of practical
interest, a MATLAB program for the evaluation of additional ROCs

is presented in appendix B.

The analytical approach utilized here can be extended to
include quantizers on the inputs in figure 1, and accuraté ROCs
can still be obtained for decision variable w(t). 1In fact, there
can be arbitrary amounts of quantization (L levels), and the
input PDFs can be completely arbitrary. This procedure will be

documented in a future report.
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APPENDIX A — ROCs FOR DETERMINISTIC SIGNAL

This appendix contains the ROCs for or-ing with pre- and
post-averaging and a deterministic input signal. In keeping with
the discussion in équations (23) and (24), the size of the
pré—averager is set at K = 1, without loss of generality. The

parameters N and M are varied over the ranges

N=1, 2, 4, 8, 16, 32,
Mm=1, 2, 4, 8, 16, 32, 64, 128, 256,

giving a total of 54 ROCs. The results in tables 1 and 2 for the
SOP and the HOP were extracted from these ROCs. Results for
other operating points can also be obtained from these ROCs, if

desired.

In the following figures, the ROCs have been computed solély
for K = 1 and labeled with the corresponding values of input
deflection dl(N,M). However, these labels could be replaced by
VK d(K,N,M) for any K, and the same ROCs would sfill apply for

any selected value of integer K. See the discussion on page 1l.

To maximize the clear region of the aliased approximations to
the CFs and EDFs obtained by FFTs (according to references 3 and
4), a procedure for using shifted RVs is presentéd in appendix C.
This alternative is very useful when a wide range of different

input SNR levels is of interest.
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APPENDIX B — MATLAB PROGRAM FOR EVALUATION OF
RECEIVER OPERATING CHARACTERISTICS

Every figure in each set of ROCs in appendix A has the three
parameter values listed on it that were used to generate those
specific curves. They are the bias b, sampling increment du, and
FFT size n. Because an additive constant to the decision
variable in figure 1 does not change the ROC (reference 1), bias
b was added to RV w(t) and chosen so as to make the sum variable
as small as possible, but never negative (within roundoff error).
This procedure maximizes the unaliased region when the final FFT
is conducted from the CF domain, equation (12), to the EDF domain
for system output w(t), as well as eases the requirements on

sampling increment du and FFT size n.

Sampling increment du is applied in the u domain to equations
(19) and (20); increment du must be taken small enough so that
the approximation to CF fV(E) in equation (11) is not aliased
significantly in the § domain. Finally, FFT size n must be taken
large enough so that the u-domain span, n du, in thé final FFT of
equation (12), from the CF to the EDF, guarantees insignificant
aliasing. Complete details on this caécade procedure are

presented in appendix B of reference 1.




All three parameter values (b, du, n) have been chosen by a
trial and error procedure, in which intermediate CF fv(ﬁ) is
observed in the § domain and output EDF ew(u) is observed in the
u domain. Repeated trials led to the tight parameter values
listed on each set of ROCs. These listed parameter values can
serve as starting or reference points for the evaluation of
additional ROCs with different values of K, N, M, and d that are
of interest to a user. The following listing of the MATLAB

program corresponds to figure A-45.

clear, clf % Part III, NUWC TR 11,248
=-380; % Additive bias to w

du=.12; % Sampling increment in u
n=2"11; % FFT size

ke=1;%FIXED % K, amount of pre-averaging
nc=16; % N, amount of or-ing

mc=256; % M, amount of post-averaging
dmin=.5; % Minimm deflection d
dinc=.05; % Increment in deflection d
mm=17; % Number of ROCs

disp('b du n; kc nc me: ')

disp([b du n; kc nc mc])

xg=[le-6 le-5 le-4 .001 .002 .005 .01 .02...
.05 .1 .2 .3 .4 .5];

vo=[le-6 le-5 le-4 .001 .002 .005 .01 .02...
.05 .1 .2 .3 .4.5.6.7 .8.9 .95 .98 .99];
xg=phiinv(xg) ;

yo—phiinv(vg) ;

[Xg, Yg]l=meshgrid(xg,y9) ;

Magcf=zeros(n,1);

EDF=zeros (n,1);

Pd=zeros (n,mm+1) ;

nl=n-1; n2=n/2; n3=n2+1; ncl=nc-1;

pn=pi/n; d2=du/2; &xi=2*pi/(n*du);
arg=pn.*(1:n2) ';

rsinc=arg./sin(arg) ;

ex=exp (b*adxd* (0:n2) '*1);

disp(" isnr edf(0)-1')



- for isnr=0:rmum
d=dmin+dinc* (isnr-1) ;
if (isnr==0), d=0; end
X=zeros(n,l)+zeros(n,l) *i;
mearv=0; cdfk=0; area=0;
u0=phiinv (10~ (-16/nc)); k=floor (u0/du);
while(cdfk < .5 | area > 1e-20)
k=k+1; uk=du*k; wW=uk+I2;
cO=phi(u2);
if (d==0), cl=c0;
else cl=phi (W2-4);
end
cdfo=cdfk; cdfk=cl*c0™ncl;
area=cdfk-cdfo;
Jj=mod(k,n) ;
X(Jj+1)=X(j+1)+area;
meanv=meanv+area*uk; % uk, not w2
ed
X=fftgreen (X) ;
Magcef=10g10 (magsq (X) +1e-50) *.5;
plot (Magcef, 'r')
axis([1l n+l -16 0]); grid on
pause(1)
X(2:n3)=conj (X(2:n3)) .*rsinc(1:n2) ;
X(n2+2:n)=0;
X=X."1me;
X(1:n3)=X(1:n3) . *ex;
nearw=meanv mc+b;
X(1)=0;
X(2:n3)=X(2:n3)./(1:n2) *;
X=fftgreen(X) ;
a=.5+mearw/ (n*du) ;
edfO=a+imag (X(1) ) /pi;
disp([isnr edf0-1])
k=(1:n)';
edf=a-(k-1) . /n+imag (X(k) ) . /pi;
X=edf;
EDF=10g10 (abs (edf) +1e-30) ;
plot (EDF, 'r')
axis([1 n+l -18 0]); orid on
pause (1)



edf=real (X(k));
edf=min(edf,1-1e-12);
edf=ex (edf, 1le-12);
PA(:,isnr+l)=phiinv(edf) ;
ed
beep
pause
clf
hold on
set (gcf, 'PaperPosition', [.25 .25 8 10.5])
plot (xg,Yqg, 'k')
plot (Xg,vg, 'k")
plot (xg,xg, 'k') % zero SNR ROC
plot (PA(:,1),Pd(:, [2:num+1]), 'k’
axis([xg(1) xg(14) yo(l) yo(21)]
axis off
while 1
T=input ('pf pd isnr: ');
if(T(1)==0), break, end
pft=phiinv(T(1));
pdt=phiinv(T(2));
isnr=T(3);
for j=0:nl
if (PA(j+1,1)<pft), break, end

)
)

ed
x1=Pd(j+1,1);

x2=Pd(3j,1);
as=Pd(j+1,isnr+l);
bs=Pd(j+1, isnr+2) ;

cs=Pd (7, isnr+l);
ss=(cs-as)/ (x2-x1) ;
al=pdt-ss*pft;
fs=(al+ss*xl-as)/ (bs-as) ;
de=dmin+dinc* (isnr-1+fs) ;
disp([T f£s dc])

d

o

function y=phiinv(x) % 0<x<1
y=1.414213562373095*erfinv (2*x-1) ;

oe

oe

function y=phi (x)
y=.5*erfcore (-x*.7071067811865476,1) ;

oP



APPENDIX C — SHIFTED DECISION VARIABLES

Suppose that the ROCs for decision variables Yo and W, under
hypotheses H0 and Hy, respectively, are of interest. That is, a
plot of exceedance probability Pd(k) = Prob(w1 > ka) versus
exceedance probability Pf(k) = Prob(w0 > ka) is desired. Let

shifted decision variables

Zg = Wy + IOA r By o= Wy oF IlA ’ (C-1)

where I, and I, are integers. Then,

Pf(k) Prob(z0 > (k + IO)A)

Qp(k + Ig)

Pd(k) Prob(zl > (k + Il)A)

Q(k + I,) , (c-2)

where exceedance probabilities Qo and Q, are computed and stored
for decision variables z and z, under hypotheses Ho and Hl'
respectively. That is, probabilities Qo(n) = Prob(z0 > nA) and

Ql(n) = Prob(zl > nA) are available.

Then, to obtain the ROC for variables Yo and Wi plot
Ql(k + Il) versus Qo(k + IO), or, equivalently, Ql(k + I1 - IO)
versus Qo(k). The integers I0 and I, should be taken with as
large negative values as possible, but still keeping the shifted
RVs z, and zq positive. This procedure enables maximum use of
the fundamental "cleared region" in the EDF plot obtained by an
FFT procedure; see references 3 and 4. 1In fact, for best

results, I1 can be a function of (SNR measure) deflection 4.
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